Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace tf.constant for TF #19

Merged
merged 1 commit into from
Apr 25, 2020
Merged

Replace tf.constant for TF #19

merged 1 commit into from
Apr 25, 2020

Conversation

jplu
Copy link
Contributor

@jplu jplu commented Apr 24, 2020

Replace simple tf.constant type of Tensor to tf.ragged.constant which allows to have examples of different size in a tf.data.Dataset.

Now the training works with TF. Here the same example than for the PT in collab:

import tensorflow as tf
import nlp
from transformers import BertTokenizerFast, TFBertForQuestionAnswering

# Load our training dataset and tokenizer
train_dataset = nlp.load('squad', split="train[:1%]")
tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased')

def get_correct_alignement(context, answer):
    start_idx = answer['answer_start'][0]
    text = answer['text'][0]
    end_idx = start_idx + len(text)
    if context[start_idx:end_idx] == text:
        return start_idx, end_idx       # When the gold label position is good
    elif context[start_idx-1:end_idx-1] == text:
        return start_idx-1, end_idx-1   # When the gold label is off by one character
    elif context[start_idx-2:end_idx-2] == text:
        return start_idx-2, end_idx-2   # When the gold label is off by two character
    else:
        raise ValueError()

# Tokenize our training dataset
def convert_to_features(example_batch):
    # Tokenize contexts and questions (as pairs of inputs)
    input_pairs = list(zip(example_batch['context'], example_batch['question']))
    encodings = tokenizer.batch_encode_plus(input_pairs, pad_to_max_length=True)

    # Compute start and end tokens for labels using Transformers's fast tokenizers alignement methods.
    start_positions, end_positions = [], []
    for i, (context, answer) in enumerate(zip(example_batch['context'], example_batch['answers'])):
        start_idx, end_idx = get_correct_alignement(context, answer)
        start_positions.append([encodings.char_to_token(i, start_idx)])
        end_positions.append([encodings.char_to_token(i, end_idx-1)])
    
    if start_positions and end_positions:
      encodings.update({'start_positions': start_positions,
                        'end_positions': end_positions})
    return encodings

train_dataset = train_dataset.map(convert_to_features, batched=True)

columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions']
train_dataset.set_format(type='tensorflow', columns=columns)
features = {x: train_dataset[x] for x in columns[:3]} 
labels = {"output_1": train_dataset["start_positions"]}
labels["output_2"] = train_dataset["end_positions"]
tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8)
model = TFBertForQuestionAnswering.from_pretrained("bert-base-cased")
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE, from_logits=True)
opt = tf.keras.optimizers.Adam(learning_rate=3e-5)
model.compile(optimizer=opt,
              loss={'output_1': loss_fn, 'output_2': loss_fn},
              loss_weights={'output_1': 1., 'output_2': 1.},
              metrics=['accuracy'])
model.fit(tfdataset, epochs=1, steps_per_epoch=3)

… allows to have examples of different size in a tf.data.Dataset
@thomwolf
Copy link
Member

Awesome!

@thomwolf thomwolf merged commit 4b95da7 into master Apr 25, 2020
@jplu jplu deleted the new-tf-type branch April 29, 2020 09:27
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants