Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][tosa] Fold 'small' constant 1D slice operations #128193

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

Tai78641
Copy link
Contributor

This commit extends the slice folder to fold constant slice operations consisting of all constant inputs where the number of output values does not exceed 6. Keeping the folder restricted to small inputs avoids a large folder runtime or increased memory requirements.

This folder is useful in the context of legalizing dynamic models where the input shapes are resolved to static directly before legalization. In this context, constant shape operations are used over tensors of num elements <= 6 (tosa_level_8k MAX_RANK).

This commit extends the slice folder to fold constant slice operations
consisting of all constant inputs where the number of output values
does not exceed 6. Keeping the folder restricted to small inputs avoids
a large folder runtime or increased memory requirements.

This folder is useful in the context of legalizing dynamic models where
the input shapes are resolved to static directly before legalization.
In this context, constant shape operations are used over tensors of
num elements <= 6 (tosa_level_8k MAX_RANK).

TF_REFSPEC: refs/changes/44/946244/1

Change-Id: I1e59e5919f8c2936e98788c5a9b44a691940b28a
Signed-off-by: Luke Hutton <[email protected]>
@llvmbot
Copy link
Member

llvmbot commented Feb 21, 2025

@llvm/pr-subscribers-mlir-tosa

@llvm/pr-subscribers-mlir

Author: Tai Ly (Tai78641)

Changes

This commit extends the slice folder to fold constant slice operations consisting of all constant inputs where the number of output values does not exceed 6. Keeping the folder restricted to small inputs avoids a large folder runtime or increased memory requirements.

This folder is useful in the context of legalizing dynamic models where the input shapes are resolved to static directly before legalization. In this context, constant shape operations are used over tensors of num elements <= 6 (tosa_level_8k MAX_RANK).


Full diff: https://github.com/llvm/llvm-project/pull/128193.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp (+30-7)
  • (modified) mlir/test/Dialect/Tosa/constant_folding.mlir (+13)
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 9bfc2aae1d6a5..f5a21689c0af3 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -1115,18 +1115,41 @@ OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
     return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());
   }
 
-  if (inputTy.hasStaticShape() && outputTy.hasStaticShape() &&
-      outputTy.getNumElements() == 1) {
-    DenseElementsAttr startElems;
-    if (!matchPattern(getStart(), m_Constant(&startElems)))
-      return {};
+  if (!inputTy.hasStaticShape() || !outputTy.hasStaticShape())
+    return {};
+
+  DenseElementsAttr startElems;
+  if (!matchPattern(getStart(), m_Constant(&startElems)))
+    return {};
 
-    llvm::SmallVector<uint64_t> indices =
-        llvm::to_vector(startElems.getValues<uint64_t>());
+  llvm::SmallVector<uint64_t> indices =
+      llvm::to_vector(startElems.getValues<uint64_t>());
+
+  if (outputTy.getNumElements() == 1) {
     auto value = operand.getValues<Attribute>()[indices];
     return SplatElementsAttr::get(outputTy, value);
   }
 
+  DenseElementsAttr size_elems;
+  if (!matchPattern(getSize(), m_Constant(&size_elems)))
+    return {};
+  const llvm::SmallVector<uint64_t> sizes =
+      llvm::to_vector(size_elems.getValues<uint64_t>());
+
+  // Fold slice when all operands are constant and the output is 'small'
+  // A 'small' output is currently defined as 1D and <= 6 elements
+  // (tosa_level_8k MAX_RANK)
+  if (inputTy.getRank() == 1 && outputTy.getRank() == 1 &&
+      outputTy.getNumElements() <= 6 && indices.size() == 1 &&
+      sizes.size() == 1) {
+    const auto begin = operand.value_begin<Attribute>();
+    const uint64_t offset = indices[0];
+    const uint64_t size = sizes[0];
+    const SmallVector<Attribute> slicedValues(begin + offset,
+                                              begin + offset + size);
+    return DenseElementsAttr::get(outputTy, slicedValues);
+  }
+
   return {};
 }
 
diff --git a/mlir/test/Dialect/Tosa/constant_folding.mlir b/mlir/test/Dialect/Tosa/constant_folding.mlir
index 3ff3121348fca..c82f522432295 100644
--- a/mlir/test/Dialect/Tosa/constant_folding.mlir
+++ b/mlir/test/Dialect/Tosa/constant_folding.mlir
@@ -21,3 +21,16 @@ func.func @try_fold_equal_with_unranked_tensor(%arg0: tensor<4xi32>, %arg1: tens
   %0 = tosa.equal %arg0, %arg1 : (tensor<4xi32>, tensor<1xi32>) -> tensor<*xi1>
   return
 }
+
+// -----
+
+// CHECK-LABEL: test_1d_slice
+func.func @test_1d_slice() -> tensor<6xi32> {
+  // CHECK: %[[VAL_0:.+]] = "tosa.const"() <{value = dense<[1, 2, 3, 4, 5, 6]> : tensor<6xi32>}> : () -> tensor<6xi32>
+  // CHECK: return %[[VAL_0]] : tensor<6xi32>
+  %0 = "tosa.const"() <{value = dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]> : tensor<10xi32>}> : () -> tensor<10xi32>
+  %1 = tosa.const_shape {value = dense<1> : tensor<1xindex>} : () -> !tosa.shape<1>
+  %2 = tosa.const_shape {value = dense<6> : tensor<1xindex>} : () -> !tosa.shape<1>
+  %3 = tosa.slice %0, %1, %2 : (tensor<10xi32>, !tosa.shape<1>, !tosa.shape<1>) -> tensor<6xi32>
+  return %3 : tensor<6xi32>
+}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants