Skip to content

This module provides functions for statistical data analysis.

License

Notifications You must be signed in to change notification settings

marisnb/m-stats

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

m-stats

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. In other words, it is a mathematical discipline to collect, summarize data.

This module provides functions for statistical data analysis.

enter image description here enter image description here enter image description here enter image description here enter image description here

Getting Started

Installation

 npm install @marisnb/m-stats --save

How to use

Integration

 const stats =  require('@marisnb/m-stats');  

API Documentation

stats.min(data)

Returns the min value in a given data.

 stats.min([])  ===  0 
 stats.min([-1])  ===  -1 
 stats.min([-1, 3, 5, -1])  ===  -1
 stats.min([-1, 3, 5, 7, 5, 5, -2])  ===  -2
 stats.min([0, 7, 3, 5, 4, 4, 4, 3, 32])  ===  0  

stats.max(data)

Returns the max value in a given data.

 stats.max([])  ===  0 
 stats.max([-1])  ===  -1 
 stats.max([-1, 3, 5, -1])  ===  5
 stats.max([-1, 3, 5, 7, 5, 5, -2])  ===  7
 stats.max([0, 7, 3, 5, 4, 4, 4, 3, 32])  ===  32  

stats.sum(data)

Sum of all values

 stats.sum([])  ===  0 
 stats.sum([-1])  ===  -1 
 stats.sum([-1, 3, 5, -1])  ===  6
 stats.sum([-1, 3, 5, 7, 5, 5, 7])  ===  31
 stats.sum([-1, 7, 3, 5, 4, 4, 4, 3, -1])  ===  28  

stats.avg(data)

Returns the avg value in a given data.

 stats.avg([])  ===  NaN 
 stats.avg([-1])  ===  -1 
 stats.avg([-1, 3, 5, -1])  ===  1.5
 stats.avg([-1, 3, 5, 7, 5, 5, -2])  ===  3.14
 stats.avg([0, 7, 3, 5, 4, 4, 4, 3, 32])  ===  6.89  

stats.mode(data)

Mode is the most common value among the given observations. For example, a person who sells ice creams might want to know which flavour is the most popular.

 stats.mode([])  ===  NaN 
 stats.mode([-1])  ===  -1 
 stats.mode([-1, 3, 5, -1])  ===  -1 
 stats.mode([-1, 3, 5, 7, 5, 5, 7])  ===  5 
 stats.mode([-1, 7, 3, 5, 4, 4, 4, 3, -1, 3])  ===  3  

stats.range(data)

The range of a set of data is the difference between the highest and lowest values in the set. For example, Cheryl took 7 math tests in one marking period. What is the range of her test scores?

 stats.range([])  ===  NaN 
 stats.range([-1])  ===  -1 
 stats.range([-1, 3, 5, -2])  ===  7 
 stats.range([-1, 3, 5, 7, 5, 5, -7])  ===  14 
 stats.range([-1, 7, 3, 5, 4, 4, 4, 3, -1, 3])  ===  8  

stats.mean(data)

Mean is the average of all the values. For example, a teacher may want to know the average marks of a test in his class.

 stats.mean([])  ===  NaN 
 stats.mean([-1])  ===  -1 
 stats.mean([-1,  2,  3,  4,  4])  ===  2.4 
 stats.mean([-1,  2.5,  3.25,  5.75])  ===  2.625  

stats.median(data)

Median is the middle value, dividing the number of data into 2 halves. In other words, 50% of the observations is below the median and 50% of the observations is above the median.

 stats.median([])  ===  NaN 
 stats.median([-1])  ===  -1 
 stats.median([-1,  3,  5])  ===  3 
 stats.median([-1,  3,  5,  7])  ===  4
 stats.median([-1,  7,  3,  5,  4])  ===  4

stats.variance(data)

variance is the expectation of the squared deviation of a random variable from its mean.

 stats.variance([])  ===  NaN 
 stats.variance([7])  ===  0 
 stats.variance([1, 2, 4, 5, 7, 11])  ===  11 
 stats.variance([3, 21, 98, 203, 17, 9])  ===  5183.25
 stats.variance([3, 4, 4, 5, 6, 8])  ===  2.67

stats.standardDeviation(data)

the standard deviation is a measure of the amount of variation or dispersion of a set of values.

 stats.standardDeviation([])  ===  NaN 
 stats.standardDeviation([7])  ===  0 
 stats.standardDeviation([1, 2, 4, 5, 7, 11])  ===  3.32 
 stats.standardDeviation([3, 21, 98, 203, 17, 9])  === 71.99
 stats.standardDeviation([3, 4, 4, 5, 6, 8])  ===  1.63

stats.harmonicMean(data)

the harmonic mean is one of several kinds of average, and in particular one of the Pythagorean means.

 stats.harmonicMean([])  ===  NaN 
 stats.harmonicMean([7])  ===  7 
 stats.harmonicMean([1, 2, 4])  ===  1.71 
 stats.harmonicMean([-1, 3, 5, 7, 5, 5, -2])  === -16.52
 stats.harmonicMean([600, 470, 430, 300, 170])  ===  326.04

Running Tests

To run the test suite first install the development dependencies:

npm install

then run the tests:

npm test

License

MIT

About

This module provides functions for statistical data analysis.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published