The Air Pressure System (APS) is a critical component of a heavy-duty vehicle that uses compressed air to force a piston to provide pressure to the brake pads, slowing the vehicle down. The benefits of using an APS instead of a hydraulic system are the easy availability and long-term sustainability of natural air.
This is a Binary Classification problem, in which the affirmative class indicates that the failure was caused by a certain component of the APS, while the negative class indicates that the failure was caused by something else.
In this project, the system in focus is the Air Pressure system (APS) which generates pressurized air that are utilized in various functions in a truck, such as braking and gear changes. The datasets positive class corresponds to component failures for a specific component of the APS system. The negative class corresponds to trucks with failures for components not related to the APS system.
The problem is to reduce the cost due to unnecessary repairs. So it is required to minimize the false predictions. <<<<<<< HEAD
origin/main
- Python
- FastAPI
- Machine learning algorithms
- Docker
- MongoDB
- AWS S3
- AWS EC2
- AWS ECR
- Git Actions
- Terraform
<<<<<<< HEAD Before we run the project, make sure that you are having MongoDB in your local system, with Compass since we are using MongoDB for data storage. You also need AWS account to access the service like S3, ECR and EC2 instances.
Before we run the project, make sure that you are having MongoDB in your local system, with Compass since we are using MongoDB for data storage. store the data in mongodb from "https://archive.ics.uci.edu/ml/machine-learning-databases/00421/" You also need AWS account to access the service like S3, ECR and EC2 instances.
origin/main
<<<<<<< HEAD
https://github.com/pb96692p/scania_air_pressure_fault_detection.git
>>>>>>> origin/main
conda create -n sensor python=3.7.6 -y
conda activate sensor
pip install -r requirements.txt
export AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
export AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
export AWS_DEFAULT_REGION=<AWS_DEFAULT_REGION>
<<<<<<< HEAD
export MONGO_DB_URL=mongodb+srv://<username>:<password>cluster0.7eh1w4s.mongodb.net/admin?authSource=admin&replicaSet=atlas-okvkrd-shard-0&w=majority&readPreference=primary&appname=MongoDB%20Compass&retryWrites=true&ssl=true
=======
export MONGODB_URL="use your mongodb url"
>>>>>>> origin/main
python app.py
http://localhost:8080/train
http://localhost:8080/predict
windows user
<<<<<<< HEAD
export MONGO_DB_URL=mongodb+srv://<username>:<password>cluster0.7eh1w4s.mongodb.net/admin?authSource=admin&replicaSet=atlas-okvkrd-shard-0&w=majority&readPreference=primary&appname=MongoDB%20Compass&retryWrites=true&ssl=true
=======
frist save MONGO_DB_URL as a environment variables in widows machine
>>>>>>> origin/main
Linux user
<<<<<<< HEAD
export MONGO_DB_URL=mongodb+srv://<username>:<password>cluster0.7eh1w4s.mongodb.net/admin?authSource=admin&replicaSet=atlas-okvkrd-shard-0&w=majority&readPreference=primary&appname=MongoDB%20Compass&retryWrites=true&ssl=true
>>>>>>> origin/main
then run
python main.py
<<<<<<< HEAD
=======
>>>>>>> origin/main