Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move tokenizer info into pte for et #1510

Merged
merged 1 commit into from
Mar 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 23 additions & 1 deletion runner/run.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,9 @@ using executorch::extension::TensorPtr;
using torch::executor::EValue;
using torch::executor::Module;
using torch::executor::Result;
using executorch::runtime::MemoryManager;
using executorch::runtime::MemoryAllocator;
using executorch::runtime::Error;
#endif

using tokenizers::SPTokenizer;
Expand Down Expand Up @@ -867,7 +870,26 @@ int main(int argc, char *argv[]) {
: torch::Device(torch::kCUDA);
ModelType model_type = get_model_type(std::stoi(aoti_metadata["tokenizer_type"]));
#else // __ET_MODEL__
ModelType model_type = get_model_type(llama_ver);
Error load_status = transformer.runner->load();
ET_CHECK_MSG(
load_status == torch::executor::Error::Ok,
"program::load() failed with status 0x%" PRIx32,
static_cast<uint32_t>(load_status));

static std::array<uint8_t, 4 * 1024U * 1024U> method_allocator_pool; // 4MB
MemoryAllocator method_allocator{MemoryAllocator(
sizeof(method_allocator_pool), method_allocator_pool.data())};
MemoryManager memory_manager(&method_allocator, nullptr);
auto tokenizer_method = transformer.runner->program()->load_method("tokenizer_type", &memory_manager);

Error execute_status = tokenizer_method->execute();
ET_CHECK_MSG(
execute_status == torch::executor::Error::Ok,
"method::execute() failed with status 0x%" PRIx32,
static_cast<uint32_t>(execute_status));

auto tokenizer_type = tokenizer_method->get_output(0).toInt();
ModelType model_type = get_model_type(tokenizer_type);
#endif

if (model_type == UNKNOWN_MODEL) {
Expand Down
36 changes: 24 additions & 12 deletions torchchat/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,7 +313,7 @@ def export_to_edge(
core_aten_ep, edge_constant_methods, edge_compile_config, verbose=verbose
)

def export_for_et(model, device, output_path) -> str:
def export_for_et(model, device, output_path, edge_constant_methods) -> str:

input = (
torch.tensor([[1]], dtype=torch.long, device=device),
Expand Down Expand Up @@ -344,12 +344,15 @@ def export_for_et(model, device, output_path) -> str:
with torch.nn.attention.sdpa_kernel(
[torch.nn.attention.SDPBackend.MATH]
), torch.no_grad():
m = export_for_training(model, input, dynamic_shapes=dynamic_shapes).module()
m = export_for_training(
model, input, dynamic_shapes=dynamic_shapes
).module()

edge_manager = export_to_edge(
m,
input,
dynamic_shapes=dynamic_shapes,
edge_constant_methods=edge_constant_methods,
edge_compile_config=edge_config,
)
edge_manager = edge_manager.to_backend(XnnpackDynamicallyQuantizedPartitioner())
Expand All @@ -365,6 +368,7 @@ def export_for_et(model, device, output_path) -> str:
)

print("The methods are: ", export_program.methods)
print("The config methods are: ", export_program.config_methods)
with open(output_path, "wb") as f:
export_program.write_to_file(f)

Expand Down Expand Up @@ -407,7 +411,9 @@ def main(args):
f"Warning! ExecuTorch export target is controlled by export recipe, not device setting. Ignoring device={builder_args.device} setting."
)
builder_args.device = "cpu"
elif (output_pte_path or output_dso_path or output_aoti_package_path) and "mps" in builder_args.device:
elif (
output_pte_path or output_dso_path or output_aoti_package_path
) and "mps" in builder_args.device:
print("Warning! Device MPS not supported for export. Exporting for device CPU.")
builder_args.device = "cpu"

Expand Down Expand Up @@ -473,13 +479,26 @@ def main(args):
support_tensor_subclass=False,
)
_unset_gguf_kwargs(builder_args)


if tokenizer_args is None:
tokenizer_type = "0"
elif tokenizer_args.is_sentencepiece:
tokenizer_type = "2" # Corresponding to llama2
else:
tokenizer_type = "3" # Corresponding to llama3

with torch.no_grad():
if output_pte_path:
output_pte_path = str(os.path.abspath(output_pte_path))
if executorch_export_available:
print(f"Exporting model using ExecuTorch to {output_pte_path}")
export_for_et(model_to_pte, builder_args.device, args.output_pte_path)
print(f"Tokenizer type is {tokenizer_type}")
export_for_et(
model_to_pte,
builder_args.device,
args.output_pte_path,
{"tokenizer_type": int(tokenizer_type)},
)
else:
print(
"Export with executorch requested but ExecuTorch could not be loaded"
Expand All @@ -503,13 +522,6 @@ def main(args):
if output_aoti_package_path:
output_aoti_package_path = str(os.path.abspath(output_aoti_package_path))

if tokenizer_args is None:
tokenizer_type = "0"
elif tokenizer_args.is_sentencepiece:
tokenizer_type = "2" # Corresponding to llama2
else:
tokenizer_type = "3" # Corresponding to llama3

metadata = {"tokenizer_type": tokenizer_type}
print(
"Exporting model using AOT Inductor to " f"{output_aoti_package_path}."
Expand Down
2 changes: 1 addition & 1 deletion torchchat/utils/scripts/build_native.sh
Original file line number Diff line number Diff line change
Expand Up @@ -100,4 +100,4 @@ else
fi
cmake --build ./cmake-out --target "${TARGET}"_run

printf "Build finished. Please run: \n./cmake-out/${TARGET}_run model.<pte|so> -z tokenizer.model -l <llama version (2 or 3)> -i <prompt>\n"
printf "Build finished. Please run: \n./cmake-out/${TARGET}_run model.<pte|so> -z tokenizer.model > -i <prompt>\n"
Loading