Skip to content

manager: use separate stream for recovery (#144) #430

manager: use separate stream for recovery (#144)

manager: use separate stream for recovery (#144) #430

Workflow file for this run

name: Unit Tests
on:
push:
branches:
- main
pull_request:
jobs:
unittest:
strategy:
fail-fast: false
matrix:
include:
- runs-on: "linux.2xlarge"
gpu-arch-type: "cpu"
gpu-arch-version: ""
torch-version: "stable"
- runs-on: "linux.g5.12xlarge.nvidia.gpu"
gpu-arch-type: "cuda"
gpu-arch-version: "12.4"
torch-version: "stable"
- runs-on: "linux.g5.12xlarge.nvidia.gpu"
gpu-arch-type: "cuda"
gpu-arch-version: "12.4"
torch-version: "nightly"
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
with:
timeout: 120
runner: ${{ matrix.runs-on }}
gpu-arch-type: ${{ matrix.gpu-arch-type }}
gpu-arch-version: ${{ matrix.gpu-arch-version }}
script: |
set -ex
# install python and protobuf
conda create -n venv python=3.12 libprotobuf -y
conda activate venv
python -m pip install --upgrade pip
# install recent version of Rust via rustup
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain=stable --profile=default -y
. "$HOME/.cargo/env"
# Optionally install torch nightly, pulls latest CUDA from pip otherwise
if [ "${{ matrix.torch-version }}" = "nightly" ]; then
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128
fi
# Install dependencies
pip install -e .[dev] -v
# Run tests
pytest -v
cargo test -v