Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add torchdata Parallel Packer for faster startup #2364

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 123 additions & 0 deletions recipes/configs/qwen2_5/32B_full_single_device_mi300.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Config for single device full finetuning in full_finetune_single_device.py
# using a Qwen2.5 7B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2.5-7B-Instruct --output-dir /tmp/Qwen2_5-7B-Instruct
#
# The default config uses an optimizer from bitsandbytes. If you do not have it installed,
# you can install it with
# pip install bitsandbytes
#
# To launch on a single device, run the following command from root:
# tune run full_finetune_single_device --config qwen2_5/7B_full_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run full_finetune_single_device --config qwen2_5/7B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

output_dir: /tmp/torchtune/qwen2_5_7B/full_single_device # /tmp may be deleted by your system. Change it to your preference.

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2_5.qwen2_5_tokenizer
path: /tmp/Qwen2_5-7B-Instruct/vocab.json
merges_file: /tmp/Qwen2_5-7B-Instruct/merges.txt
max_seq_len: 2048

# Dataset
# dataset:
# _component_: torchtune.datasets.alpaca_cleaned_dataset
# packed: False # True increases speed
# seed: null
# shuffle: True
dataset:
_component_: torchtune.datasets.chat_dataset
source: json
data_files: /home/andrewkh/local/test.jsonl
split: train
conversation_column: conversations
conversation_style: sharegpt
packed: True # True increases speed
packer_num_workers: 12

seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2_5.qwen2_5_7b_instruct

checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2_5-7B-Instruct
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: bitsandbytes.optim.PagedAdamW
lr: 5e-6
optimizer_in_bwd: True # True saves memory. Requires gradient_accumulation_steps=1
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 1 # Use to increase effective batch size
compile: False # torch.compile the model + loss, True increases speed + decreases memory

# Training environment
device: cuda

# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory

# Reduced precision
dtype: bf16

# Logging
metric_logger:
# _component_: torchtune.training.metric_logging.DiskLogger
# log_dir: ${output_dir}/logs
_component_: torchtune.training.metric_logging.StdoutLogger
log_every_n_steps: 1
log_peak_memory_stats: False


# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1
7 changes: 6 additions & 1 deletion torchtune/datasets/_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def chat_dataset(
packed: bool = False,
filter_fn: Optional[Callable] = None,
split: str = "train",
packer_num_workers: Optional[int] = None,
**load_dataset_kwargs: Dict[str, Any],
) -> Union[SFTDataset, PackedDataset]:
"""
Expand Down Expand Up @@ -183,5 +184,9 @@ def chat_dataset(
raise ValueError(
"PackedDataset requires a max_seq_len to be set on the tokenizer."
)
return PackedDataset(ds, max_seq_len=tokenizer.max_seq_len)
return PackedDataset(
ds,
max_seq_len=tokenizer.max_seq_len,
num_workers=packer_num_workers,
)
return ds
Loading
Loading