Skip to content

The Course Machine Learning A-Z with all its codes and datasets implementation both in python and R

Notifications You must be signed in to change notification settings

qalmaqihir/Machine_Learning_Models

Repository files navigation

Machine_Learning_Models

The Course Machine Learning A-Z with all its codes and datasets implementation both in python and R The Structure of the repository, in case you clone it.

├── part_1DataPreprocessing
│   └── Python
│   ├── data_preprocessing_template.py
│   └── data_preprocessing_tools.py
├── part_2Regression
│   └── Python
│   ├── 00_simple_linear_regression.py
│   ├── 01_multiple_linear_regression.py
│   ├── 03_polynomial_linear_regression.py
│   ├── 04_support vector regression.py
│   ├── 05_decision_tree_regression.py
│   └── 06_random_forest_regressor.py
├── part_3Classification
│   └── Python
│   ├── 11logistic_regression.py
│   ├── 12k_nearest_neighbors.py
│   ├── 13SVM.py
│   ├── 14kernal_svm.py
│   ├── 15naive_bayes.py
│   ├── 16decision_tree.py
│   └── 17random_forest.py
├── part_4Clustering
│   └── Python
│   ├── 01kmeans.py
│   └── 02hierarchial_clustering.py
├── part_5AssociationRuleLearning
│   └── Python
│   ├── apriori_alo.py
│   ├── aprioriML.ipynb
│   ├── aprioriML.py
│   ├── eclat.py
│   └── elcat.ipynb
├── part_6ReinforcementLearning
│   └── Python
│   ├── thomsan_sampling.py
│   ├── upper_confidence_boud.py
│   └── upper_confidencebound.py
├── part_7NaturalLanguageProcessing
│   └── Python
│   └── nlp.py
├── part_8DeepLearning
│   ├── ANN
│   │   └── ann_customers_churn_model.py
│   └── CNN
│   └── cnn.py
├── part_9DimensionalityReduction
│   ├── isomap.py
│   ├── kernal_PCA.py
│   ├── linear_discrimination_analysis.py
│   └── principal_component_analysis.py
|── part_10model_selection
│   ├── grid_search.py
│   ├── k_fold_cross_validation.py
│   └── xg_boost.py
├── test.py

Do give a start if it helped. Enjoy Learning Machine Learning.

About

The Course Machine Learning A-Z with all its codes and datasets implementation both in python and R

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published