Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix issue with unsorted indices in csc_matrix #1524

Merged
merged 3 commits into from
Jan 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@
- Fixed issue where `virtualenv_create()` would error on Ubuntu 22.04 when
using the system python as a base. (#1495, fixed in #1496).

- Fixed issue where `csc_matrix` objects with unsorted indices could not be converted to a dgCMatrix. (related to #727, fixed in #1524, contributed by @rcannood).

# reticulate 1.34.0

# reticulate 1.33.0
Expand Down
1 change: 1 addition & 0 deletions R/conversion.R
Original file line number Diff line number Diff line change
Expand Up @@ -517,6 +517,7 @@ r_to_py.dgCMatrix <- function(x, convert = FALSE) {
py_to_r.scipy.sparse.csc.csc_matrix <- function(x) {
disable_conversion_scope(x)

x <- x$sorted_indices()
new(
"dgCMatrix",
i = as.integer(as_r_value(x$indices)),
Expand Down
105 changes: 105 additions & 0 deletions tests/testthat/test-python-scipy-sparse-matrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -190,3 +190,108 @@ test_that("Conversion between R sparse matrices without specific conversion func
expect_true(is(result, "scipy.sparse.csc.csc_matrix") || is(result, "scipy.sparse._csc.csc_matrix"))
check_matrix_conversion(x, result)
})

test_that("Conversion with unsorted values works in csc", {
skip_on_cran()
skip_if_no_scipy()

sp <- import("scipy.sparse", convert = FALSE)

# Test data
indices <- c(1L, 0L, 2L, 1L, 0L)
indptr <- c(0L, 3L, 5L)
data <- c(2, 1, 3, 5, 4)

# create csr matrix and try to convert
mat_py <- sp$csc_matrix(
tuple(
np_array(data),
np_array(indices),
np_array(indptr),
convert = FALSE
),
shape = c(3L, 2L)
)

mat_py_to_r <- py_to_r(mat_py)

mat_r <- Matrix::sparseMatrix(
i = indices + 1,
p = indptr,
x = data,
dims = c(3L, 2L)
)

expect_equal(as.matrix(mat_py_to_r), as.matrix(mat_r))
})

test_that("Conversion with unsorted values works in csr", {
skip_on_cran()
skip_if_no_scipy()

sp <- import("scipy.sparse", convert = FALSE)

# Test data
indices <- c(1L, 0L, 2L, 1L, 0L)
indptr <- c(0L, 3L, 5L)
data <- c(2, 1, 3, 5, 4)

# create csr matrix and try to convert
mat_py <- sp$csr_matrix(
tuple(
np_array(data),
np_array(indices),
np_array(indptr),
convert = FALSE
),
shape = c(2L, 3L)
)

mat_py_to_r <- py_to_r(mat_py)

mat_r <- Matrix::sparseMatrix(
j = indices + 1,
p = indptr,
x = data,
dims = c(2L, 3L)
)

expect_equal(as.matrix(mat_py_to_r), as.matrix(mat_r))
})


test_that("Conversion with unsorted values works in coo", {
skip_on_cran()
skip_if_no_scipy()

sp <- import("scipy.sparse", convert = FALSE)

# Test data
row <- c(1L, 0L, 2L, 1L, 0L)
col <- c(1L, 0L, 0L, 0L, 1L)
data <- c(5, 1, 3, 2, 4)

# create csr matrix and try to convert
mat_py <- sp$coo_matrix(
tuple(
np_array(data),
tuple(
np_array(row),
np_array(col)
),
convert = FALSE
),
shape = c(3L, 2L)
)

mat_py_to_r <- py_to_r(mat_py)

mat_r <- Matrix::sparseMatrix(
i = row + 1,
j = col + 1,
x = data,
dims = c(3L, 2L)
)

expect_equal(as.matrix(mat_py_to_r), as.matrix(mat_r))
})
Loading