Keras (TensorFlow v2) reimplementation of Visual Attention Network model. Based on Official Pytorch implementation.
Supports variable-shape inference. All weights are obtained by converting official checkpoints.
pip install tfvan
Default usage (without preprocessing):
from tfvan import VanTiny # + 3 other variants and input preprocessing
model = VanTiny() # by default will download imagenet-pretrained weights
model.compile(...)
model.fit(...)
Custom classification (with preprocessing):
from keras import layers, models
from tfvan import VanTiny, preprocess_input
inputs = layers.Input(shape=(224, 224, 3), dtype='uint8')
outputs = layers.Lambda(preprocess_input)(inputs)
outputs = VanTiny(include_top=False)(outputs)
outputs = layers.Dense(100, activation='softmax')(outputs)
model = models.Model(inputs=inputs, outputs=outputs)
model.compile(...)
model.fit(...)
For correctness, Tiny
and Small
models (original and ported) tested
with ImageNet-v2 test set.
import tensorflow as tf
import tensorflow_datasets as tfds
from tfvan import VanTiny, preprocess_input
def _prepare(example):
# Observation: +2.2% top1 accuracy in tiny and +0.9% in small model with antialias=True
image = tf.image.resize(example['image'], (248, 248), method=tf.image.ResizeMethod.BICUBIC)
image = tf.image.central_crop(image, 0.9)
image = preprocess_input(image)
return image, example['label']
imagenet2 = tfds.load('imagenet_v2', split='test', shuffle_files=True)
imagenet2 = imagenet2.map(_prepare, num_parallel_calls=tf.data.AUTOTUNE)
imagenet2 = imagenet2.batch(8)
model = VanTiny()
model.compile('sgd', 'sparse_categorical_crossentropy', ['accuracy', 'sparse_top_k_categorical_accuracy'])
history = model.evaluate(imagenet2)
print(history)
name | original acc@1 | ported acc@1 | original acc@5 | ported acc@5 |
---|---|---|---|---|
Tiny | 59.22 | 61.59 | 82.32 | 84.52 |
Small | 70.17 | 68.62 | 89.17 | 88.54 |
@article{guo2022visual,
title={Visual Attention Network},
author={Guo, Meng-Hao and Lu, Cheng-Ze and Liu, Zheng-Ning and Cheng, Ming-Ming and Hu, Shi-Min},
journal={arXiv preprint arXiv:2202.09741},
year={2022}
}