Skip to content

tinybike/weightedstats

Folders and files

NameName
Last commit message
Last commit date

Latest commit

35ca9b7 · Oct 24, 2020

History

14 Commits
Feb 4, 2020
Feb 4, 2020
Feb 4, 2020
Oct 24, 2020
Sep 27, 2014
Sep 27, 2014
Feb 4, 2020
Feb 4, 2020
Jan 23, 2015

Repository files navigation

WeightedStats

https://travis-ci.org/tinybike/weightedstats.svg?branch=master

https://coveralls.io/repos/github/tinybike/weightedstats/badge.svg?branch=master:target:https://coveralls.io/github/tinybike/weightedstats?branch=master

Python functions to calculate the mean, weighted mean, median, and weighted median.

Installation

The easiest way to install WeightedStats is to use pip:

$ pip install weightedstats

Usage

WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.

Example:

import weightedstats as ws

my_data = [1, 2, 3, 4, 5]
my_weights = [10, 1, 1, 1, 9]

# Ordinary (unweighted) mean and median
ws.mean(my_data)    # equivalent to ws.weighted_mean(my_data)
ws.median(my_data)  # equivalent to ws.weighted_median(my_data)

# Weighted mean and median
ws.weighted_mean(my_data, weights=my_weights)
ws.weighted_median(my_data, weights=my_weights)

# Special weighted mean and median functions for use with numpy arrays
ws.numpy_weighted_mean(my_data, weights=my_weights)
ws.numpy_weighted_median(my_data, weights=my_weights)

Tests

Unit tests are in the test/ directory.

About

Calculate weighted mean, median, and weighted median.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages