-
DeepPhys : DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks
-
MTTS :Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement
- need to verification
-
DeepPhys + LSTM
-
PP-Net: A Deep Learning Framework for PPG based Blood Pressure and Heart Rate Estimation
-
dataset : related to dataset
- dataset_loader.py : pytorch.utils.dataset stored dataset file load(.hpy)
- __NetworkName__Dataset.py : Customized dataset to fit each model.
-
nets : related to Network Architecture
( funcs < layers < blocks < modules <= sub_models <= models)- blocks
- funcs
- layers
- models
- sub_models
- modules
-
pyVHR : git clone at phuselab/pyVHR
-
log.py : custom log functions
-
loss.py : available loss list & custom loss functions
-
optim.py : available optimizer list & custom optimizer functions
-
main.py
-
params.json : List of options for training
-
__TIME__ : check features running time
- preprocessing time
- model init time
- setting loss func time
- setting optimizer time
- training time per 1epoch
- inference time per 1 batch
-
__PREPROCESSING__ : perform preprocessing before training & generate preprocessed file(.hpy)
-
__MODEL_SUMMARY__ : print model architecture summary using torchsummary
- modify params.json
example
"model_params":
{
"name": "DeepPhys",
"name_comment":
[
"DeepPhys",
"PhysNet"
]
}
- run main.py
- before test modify sample2.cfg(./pyVHR/analysis/sample2.cfg)
[DEFAULT]
'''
methods = ['POS','CHROM','ICA','SSR','LGI','PBV','GREEN'] # Change Method
'''
[VIDEO]
dataset = LGI_PPGI # change dataset
videodataDIR= /media/hdd1/LGGI/ # change dataset path
BVPdataDIR = /media/hdd1/LGGI/
;videoIdx = all
videoIdx = [1,2,5,6] # change test video idx
detector = media-pipe # use media-pipe, it's proposed ROI option
- before test, modify test suit file(./pyVHR/analysis/testsuite.py), all regions one-hot mapping.
'''
test for all region
'''
# tmp = bin(test)
# binary = ''
# for i in range(mask_num-len(tmp[2:])):
# binary += '0'
# binary += tmp[2:]
'''
test for top-5 & bot -5
'''
if test_case == 0 :
binary = '0011000000000000000100000001001'
else :
binary = '0000000001100001011000000000000'
-
run _1_rppg_assesment.py
-
all mask information found at video.py's make_mask function (./pyVHR/signals/video.py)
Dae Yeol Kim, [email protected]
Jin Soo Kim, [email protected]
Kwangkee Lee, [email protected]
This work was supported by the ICT R&D program of MSIP/IITP. [2021(2021-0-00900), Adaptive Federated Learning in Dynamic Heterogeneous Environment]