forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Lora hot swapping #2
Merged
Merged
+1,274
−23
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This PR adds the possibility to hot-swap LoRA adapters. It is WIP. Description As of now, users can already load multiple LoRA adapters. They can offload existing adapters or they can unload them (i.e. delete them). However, they cannot "hotswap" adapters yet, i.e. substitute the weights from one LoRA adapter with the weights of another, without the need to create a separate LoRA adapter. Generally, hot-swapping may not appear not super useful but when the model is compiled, it is necessary to prevent recompilation. See huggingface#9279 for more context. Caveats To hot-swap a LoRA adapter for another, these two adapters should target exactly the same layers and the "hyper-parameters" of the two adapters should be identical. For instance, the LoRA alpha has to be the same: Given that we keep the alpha from the first adapter, the LoRA scaling would be incorrect for the second adapter otherwise. Theoretically, we could override the scaling dict with the alpha values derived from the second adapter's config, but changing the dict will trigger a guard for recompilation, defeating the main purpose of the feature. I also found that compilation flags can have an impact on whether this works or not. E.g. when passing "reduce-overhead", there will be errors of the type: > input name: arg861_1. data pointer changed from 139647332027392 to 139647331054592 I don't know enough about compilation to determine whether this is problematic or not. Current state This is obviously WIP right now to collect feedback and discuss which direction to take this. If this PR turns out to be useful, the hot-swapping functions will be added to PEFT itself and can be imported here (or there is a separate copy in diffusers to avoid the need for a min PEFT version to use this feature). Moreover, more tests need to be added to better cover this feature, although we don't necessarily need tests for the hot-swapping functionality itself, since those tests will be added to PEFT. Furthermore, as of now, this is only implemented for the unet. Other pipeline components have yet to implement this feature. Finally, it should be properly documented. I would like to collect feedback on the current state of the PR before putting more time into finalizing it.
Requires huggingface/peft#2366 More changes to make hotswapping work. Together with the mentioned PEFT PR, the tests pass for me locally. List of changes: - docstring for hotswap - remove code copied from PEFT, import from PEFT now - adjustments to PeftAdapterMixin.load_lora_adapter (unfortunately, some state dict renaming was necessary, LMK if there is a better solution) - adjustments to UNet2DConditionLoadersMixin._process_lora: LMK if this is even necessary or not, I'm unsure what the overall relationship is between this and PeftAdapterMixin.load_lora_adapter - also in UNet2DConditionLoadersMixin._process_lora, I saw that there is no LoRA unloading when loading the adapter fails, so I added it there (in line with what happens in PeftAdapterMixin.load_lora_adapter) - rewritten tests to avoid shelling out, make the test more precise by making sure that the outputs align, parametrize it - also checked the pipeline code mentioned in this comment: huggingface#9453 (comment); when running this inside the with torch._dynamo.config.patch(error_on_recompile=True) context, there is no error, so I think hotswapping is now working with pipelines.
- Revert deprecated method - Fix PEFT doc link to main - Don't use private function - Clarify magic numbers - Add pipeline test Moreover: - Extend docstrings - Extend existing test for outputs != 0 - Extend existing test for wrong adapter name
parameterized.expand seems to ignore skip decorators if added in last place (i.e. innermost decorator).
Also increase test coverage by also targeting conv2d layers (support of which was added recently on the PEFT PR).
... instead of having them on each test method.
Co-authored-by: hlky <[email protected]>
I.e. for the text encoder
- mention no text encoder support yet - make it clear that LoRA is meant - mention that same adapter name should be passed
- SDXL - SD3 - Flux No changes were made to load_lora_into_transformer.
For SD3 and Flux. Use shorter docstring for brevity.
Co-authored-by: Steven Liu <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What does this PR do?
Fixes # (issue)
Before submitting
documentation guidelines, and
here are tips on formatting docstrings.
Who can review?
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.