for the user:
git submodule update --init --recursive
conda env create -f environment.yml
conda activate advspeech
pip3 install --force-reinstall torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
for dev:
conda env update --file dev-environment.yml --prune
-> poetry update
conda-lock lock -f dev-environment.yml
-> lock the environment
if you only want to protect the audio, you could either provide the info directly
python main.py --input audios/en_sample/libri_5694.wav --reference audios/en_sample/ref_ws.wav
or use the config
python main.py --config audios/en_sample/config.yaml
sample audio is hosted on https://yrymax.github.io/AdvSpeech/sample_web/ dataset: https://huggingface.co/datasets/Renyi444/AdvSpeech
if you want to see the benchmark, you need you install the env for all the external repositories.
- antifake: https://github.com/WUSTL-CSPL/AntiFake
- NISQA: https://github.com/gabrielmittag/NISQA
- TTS: https://github.com/coqui-ai/TTS
- OpenVoice: https://github.com/myshell-ai/OpenVoice
- CosyVoice: https://github.com/FunAudioLLM/CosyVoice
- Wespeaker: https://github.com/wenet-e2e/wespeaker
then run run benchmark_pipeline.py
to add a new matrix -> contribute under Metrics
to add a new adv method -> add a new method under adv_runner
to add a new synthesizer -> add a new class under synthesizer
that inherits from Synthesizer
to add a new experiment -> add a new method under BenchmarkPipeline