Skip to content

Commit

Permalink
Merge commit 'bc5c64a01b6def0b8943dc11c78cb21d983652b1'
Browse files Browse the repository at this point in the history
  • Loading branch information
Darth Vader committed Oct 8, 2024
2 parents 1748259 + bc5c64a commit 6f49eb0
Show file tree
Hide file tree
Showing 51 changed files with 198 additions and 118 deletions.
2 changes: 1 addition & 1 deletion src/phast/PhreeqcRM/database/Kinec.v2.dat
Original file line number Diff line number Diff line change
Expand Up @@ -7407,7 +7407,7 @@ Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2
# Additional phases
##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals####
# 16 added solids
# The thermodynmaic propeties are from the llnl.data database expet for Gaspite
# The thermodynmaic properties are from the llnl.data database export for Gaspite
#------------


Expand Down
8 changes: 4 additions & 4 deletions src/phast/PhreeqcRM/database/Kinec_v3.dat
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@

#KINETICS
#Augite_ss # Name of the mineral
# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid soultions.
# -formula Mg0.45Fe0.275Ca0.275SiO3 1 # Mineral formula ! must be added to run solid solutions.
# -m0 100 # Initial moles of mineral
# -parms 0 0.0088183 0 2 # Four parameters as explained below

Expand All @@ -57,7 +57,7 @@
#
# and
#
# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preperation)
# Oelkers, E.H., Addassi, M. 2024. A comprehensive and internally consistent mineral dissolution rate database: Part III: Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals. (in preparation)
# *********************************************************************
#
# Thermodynamics from carbfix.dat (Voigt et al., 2018).
Expand Down Expand Up @@ -89,7 +89,7 @@
# HOK+98: http://dx.doi.org/10.1016/S0016-7037(97)00219-6 (C2H6(g), C3H8(g))
# Hovis04: http://dx.doi.org/10.2138/am-2004-0111 (NH4-muscovite molar volume)
# HSS95: http://dx.doi.org/10.1016/0016-7037(95)00314-P (55 solutes)
# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earch Sci. Dept, LLNL, Livermore, CA. (H2O(g))
# Joh90: Johnson, J.W., 1990, Personal calculation, Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 C): Earth Sci. Dept, LLNL, Livermore, CA. (H2O(g))
# Kel60: http://www.worldcat.org/oclc/693388901 (8 gases)
# M13: McColm I. J. (2013) Dictionary of Ceramic Science and Engineering, p.72. (CaUO4 molar volume)
# Marion+03: http://dx.doi.org/10.1016/S0016-7037(03)00372-7 (FeOH+)
Expand Down Expand Up @@ -7527,7 +7527,7 @@ Si1.00Al0.23O2(OH)0.69 + 0.23 OH- = 0.23 Al(OH)4- + SiO2
# Additional phases
##Non-silicate minerals including carbonate, sulfide, phosphate, halide, and oxy-hydroxide minerals####
# 16 added solids
# The thermodynmaic propeties are from the llnl.data database expet for Gaspite
# The thermodynmaic properties are from the llnl.data database export for Gaspite
#------------


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
# update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY
# update 08.01.2019 - corrected INFCNA formula and reaction; 23.09.2019 fixed logK to 17.4787
# update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to
# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018)
# phreeqc A[3]*log10(T); for phases added in update 03.12.2018)
# update 31.03.2022 - added missing C4FeCl2H10 (Fe Friedel's salt ideal composition) and reactions for Fe(OH)3(am) and Fe(OH)3(mic) with original source
# Hummel et al. (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Nagra Technical Report NTB 02-16
#
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
# update 03.12.2018 - added missing phases: zeoliteP_Ca, chabazite, M075SH, M15SH, zeoliteX, natrolite, zeoliteY
# update 08.01.2019 - corrected INFCNA formula and reaction
# update 16.01.2019 - fixed a3 parameter from the logK analytical function (wrong converted from A[3]*ln(T) GEMS to
# phreeqc A[3]*log10(T); for phases aded in update update 03.12.2018)
# phreeqc A[3]*log10(T); for phases added in update 03.12.2018)
#
# for questions contact: Barbara Lothenbach ([email protected]); G. Dan Miron ([email protected])

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12434,7 +12434,7 @@ References
# 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862
# 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p.
# 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR
# 08las Lassin A., 2008, personnal calculations.
# 08las Lassin A., 2008, personal calculations.
# 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731
# 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349.
# 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p.
Expand Down Expand Up @@ -12814,7 +12814,7 @@ References
# 15bla/vie Blanc, P., Vieillard, P., Gailhanou, H., Gaboreau, S., Gaucher, E.C., Fialips, C.I., Made, B., Giffaut, E., 2015. A generalized model for predicting the thermodynamic properties of clay minerals. American Journal of Science 315, 734-780.
# 17bbla Blanc P., 2017 D3E/BGE N 2017-077 (Compte-rendu de reunion), 17 p.
# 16bla Blanc P., (2016) Biomore WP1 progress report
# 17roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited
# 17roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted
# 07pow/bro Powell, K.J., Brown, P.L., Byrne, R.H., Gadja, T., Hefter, G., Sjoberg, S., Wanner, H., 2007. Chemical speciation of environmentally significant metals with inorganic ligands Part 2 : The Cu[2+]-OH[-], Cl[-], CO[3][2-], SO[4][2-], and PO[4][3-] systems : (IUPAC Technical Report). Pure and applied chemistry, USA.
# 00pui Puigdomenech, I., 2000. Thermodynamic data for copper: implications for the corrosion of copper under repository conditions, SKB report. SKB/Swedish Nuclear Fuel and Waste Management, p. 96.
# 09xio Xiong, Y., 2009. The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environmental Chemistry 6, 441-451.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1936,7 +1936,7 @@ K+ = K+
# calculation mode: Entered
# datatype category: R (Reaction Data)
# evaluation data quality, data class, data source: 1, 1, 4
# data description: Application of the chemcial model of Th(IV); Pu(IV) complex could not be identified by EXAFS
# data description: Application of the chemical model of Th(IV); Pu(IV) complex could not be identified by EXAFS
# contrary to the Th(IV) complex (and the Zr(IV) complex Ca3[Zr(OH)6]4+) which could be identified and
# characterized by EXAFS measurements
# LOGK298 value reference: FEL/NEC2010
Expand Down Expand Up @@ -2672,7 +2672,7 @@ PHASES
# S298 = 669 J mol-1 K-1, GUI/FAN2003


# pcon description (Al(OH)3(am)): amorphous Al(OH)3 as decribed in CEMDATA07 original reaction in CEMDATA07 with LOGK298 = 0.24
# pcon description (Al(OH)3(am)): amorphous Al(OH)3 as described in CEMDATA07 original reaction in CEMDATA07 with LOGK298 = 0.24
Al(OH)3(am)
1 Al(OH)3 = +1.00000000 Al(OH)4- -1.00000000 H2O +1.00000000 H+
log_k -13.759
Expand Down Expand Up @@ -19892,7 +19892,7 @@ O2 Na+ Mg+2 -0.01709
# Volume: 40
# Page: 980-990
# Doi: 10.1016/j.jct.2008.02.006
# Puburl: hhttp://www.sciencedirect.com/science/article/pii/S0021961408000426ttp://www.sciencedirect.com/science/article/B6WHM-4RW43BP-3/2/8053c8459b4ca70d64e52142d205fde6
# Puburl: http://www.sciencedirect.com/science/article/pii/S0021961408000426ttp://www.sciencedirect.com/science/article/B6WHM-4RW43BP-3/2/8053c8459b4ca70d64e52142d205fde6

# YOU/BAT1981
# Type: Book
Expand Down Expand Up @@ -20187,7 +20187,7 @@ O2 Na+ Mg+2 -0.01709
# STE/HOO1944
# Type: Journal
# Language: English
# Title: The heat capacity of potassium dihydrogen phosphate from 15 to 300K. The anormaly at the curie temperature
# Title: The heat capacity of potassium dihydrogen phosphate from 15 to 300K. The anomaly at the curie temperature
# Author: Hooley, J. G., Stephenson, C. C.
# Pubname: Journal of the American Chemical Society
# Year: 1944
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3459,7 +3459,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0

1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT)
log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -6201,7 +6201,7 @@ SOLUTION_SPECIES
-analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0

1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii
log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -7659,7 +7659,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0

1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1
log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -10771,7 +10771,7 @@ Cm = 3.000e- + 1.000Cm+3

Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III)
log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3430,7 +3430,7 @@ SOLUTION_SPECIES

1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
-llnl_gamma 5.7
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT)
log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -6692,7 +6692,7 @@ SOLUTION_SPECIES

1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
-llnl_gamma 3.4
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii
log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -8393,7 +8393,7 @@ SOLUTION_SPECIES

1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
-llnl_gamma 5.7
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1
log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -11759,7 +11759,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2

Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III)
log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12554,7 +12554,7 @@ References
# 08bas/pet Basciano L.C., Peterson R.C. (2008) Amer. Mineral., 93, 853-862
# 08bla Blanc P. (2008) : Thermoddem - Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de fer. Rapport final. Rapport BRGM/RP-56587-FR, 70p.
# 08gai Gailhanou H. (2008) : Thermochimie : Acquisition des proprietes thermodynamiques sur une berthierine et revision des donnees sur les mineraux argileux. Rapport final BRGM/RP-56838-FR
# 08las Lassin A., 2008, personnal calculations.
# 08las Lassin A., 2008, personal calculations.
# 08per/pok Perfetti E., Pokrovski G., Ballerat-Busserolles K., Majer V., Gibert F. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 C and 300 bar, and revised thermodynamic properties of As(OH)3(aq), AsO(OH)3(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72, 713-731
# 08sch/lot Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K.L., Rentsch, D., Figi, R. (2008), A thermodynamic and experimental study of the conditions of thaumasite formation, Cement and Concrete Research, 38(3), 337-349.
# 08vie Vieillard P., 2008. Estimation des entropies et capacites calorifiques des zeolithes. Rapport CNRS-Hydrasa 2008, 29 p.
Expand Down Expand Up @@ -12588,7 +12588,7 @@ References
# 17abla Blanc P. (2017) Selection de proprietes thermodynamiques pour les principales especes aqueuses et minerales porteuses de thallium. Rapport final. Rapport BRGM 66385-FR.
# 17bbla Blanc P. (2017) - Thermoddem : Update for the 2017 version. Report BRGM/RP-66811-FR, 20 p.
# 17gai/vie Gailhanou, H., Vieillard, P., Blanc, P., Lassin, A., Denoyel, R., Bloch, E., De Weireld, G., Claret, F., Fialips, C.I., Made, B., Giffaut, E., 2017. Methodology for determining the thermodynamic properties of hydration of Na-smectite considering the energetic contribution of capillary water. Applied Geochemistry.
# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submited
# 18roo/vie Roosz et al., 2017. Thermodynamic properties of C-(A)-S-H and M-S-H phases: results from direct measurements and predictive modelling. Applied Geochemistry, submitted
# 18nea NEA, 2018. Forthcoming TDB selection on cement minerals
# 18sig SIGARRR, 2018. Forthcoming results from the project.
# 33dan D'Ans J., 1933. Die Losegleichgewichte der Systeme der Salze ozeanischer Salzablagerungen. Kaliorschungs Anstalt GmbH, Berlin Verlagsgesellschaft fur Ackerbau MBH, Berlin SW11
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3459,7 +3459,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0

1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT)
log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -6201,7 +6201,7 @@ SOLUTION_SPECIES
-analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0

1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii
log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -7659,7 +7659,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0

1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1
log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -10771,7 +10771,7 @@ Cm = 3.000e- + 1.000Cm+3

Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III)
log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3459,7 +3459,7 @@ SOLUTION_SPECIES
-analytic 7.78E+0 0E+0 0E+0 0E+0 0E+0

1.000Eu+3 + 1.000NO3- = Eu(NO3)+2
log_k 1.210 #09RAO/TIA1 (Calculated usig SIT)
log_k 1.210 #09RAO/TIA1 (Calculated using SIT)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic 1.21E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -6201,7 +6201,7 @@ SOLUTION_SPECIES
-analytic 2.42556E+0 0E+0 -2.24374E+3 0E+0 0E+0

1.000NpO2+2 - 2.000H+ + 2.000H2O = NpO2(OH)2
log_k -12.210 #Estimated by correlation with An(VI) in funciton of ionic radii
log_k -12.210 #Estimated by correlation with An(VI) in function of ionic radii
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -1.221E+1 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -7659,7 +7659,7 @@ SOLUTION_SPECIES
-analytic 9.73237E+0 0E+0 -9.84603E+2 0E+0 0E+0

1.000Sm+3 - 1.000H+ + 1.000H4(SiO4) = SmSiO(OH)3+2
log_k -2.620 #Orginal data 07THA/SIN and 96JEN/CHO1
log_k -2.620 #Original data 07THA/SIN and 96JEN/CHO1
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -2.62E+0 0E+0 0E+0 0E+0 0E+0
Expand Down Expand Up @@ -10771,7 +10771,7 @@ Cm = 1.000Cm+3 + 1.500H2O - 3.000H+ - 0.750O2

Cm2(CO3)3(am)
Cm2(CO3)3 = 3.000CO3-2 + 2.000Cm+3
log_k -33.900 #estimated in analogy wiht Ln(III) and Am(III)
log_k -33.900 #estimated in analogy with Ln(III) and Am(III)
# delta_h 0.000 #kJ/mol
# Enthalpy of formation: #kJ/mol
-analytic -3.39E+1 0E+0 0E+0 0E+0 0E+0
Expand Down
Loading

0 comments on commit 6f49eb0

Please sign in to comment.