Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Ultravox Model: Support v0.5 Release #12912

Merged
merged 6 commits into from
Feb 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/models/supported_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -856,7 +856,7 @@ See [this page](#generative-models) for more information on how to use generativ
- * `UltravoxModel`
* Ultravox
* T + A<sup>E+</sup>
* `fixie-ai/ultravox-v0_3`
* `fixie-ai/ultravox-v0_5-llama-3_2-1b`
* ✅︎
* ✅︎
* ✅︎
Expand Down
4 changes: 2 additions & 2 deletions docs/source/serving/multimodal_inputs.md
Original file line number Diff line number Diff line change
Expand Up @@ -359,12 +359,12 @@ export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>
### Audio

Audio input is supported according to [OpenAI Audio API](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in).
Here is a simple example using Ultravox-v0.3.
Here is a simple example using Ultravox-v0.5-1B.

First, launch the OpenAI-compatible server:

```bash
vllm serve fixie-ai/ultravox-v0_3
vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b
```

Then, you can use the OpenAI client as follows:
Expand Down
4 changes: 2 additions & 2 deletions examples/offline_inference/audio_language.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,9 @@
# Unless specified, these settings have been tested to work on a single L4.


# Ultravox 0.3
# Ultravox 0.5-1B
def run_ultravox(question: str, audio_count: int):
model_name = "fixie-ai/ultravox-v0_3"
model_name = "fixie-ai/ultravox-v0_5-llama-3_2-1b"

tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2

(audio inference with Ultravox)
vllm serve fixie-ai/ultravox-v0_3 --max-model-len 4096
vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b --max-model-len 4096
"""
import base64

Expand Down
4 changes: 2 additions & 2 deletions tests/distributed/test_pipeline_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ def iter_params(self, model_name: str):
"Qwen/Qwen-VL-Chat": PPTestSettings.fast(trust_remote_code=True),
"Qwen/Qwen2-Audio-7B-Instruct": PPTestSettings.fast(),
"Qwen/Qwen2-VL-2B-Instruct": PPTestSettings.fast(),
"fixie-ai/ultravox-v0_3": PPTestSettings.fast(trust_remote_code=True),
"fixie-ai/ultravox-v0_5-llama-3_2-1b": PPTestSettings.fast(trust_remote_code=True), # noqa: E501
# [Encoder-decoder]
# TODO: Implement PP
# "meta-llama/Llama-3.2-11B-Vision-Instruct": PPTestSettings.fast(),
Expand All @@ -234,7 +234,7 @@ def iter_params(self, model_name: str):
# [MULTIMODAL GENERATION]
"OpenGVLab/InternVL2-1B",
"microsoft/Phi-3-vision-128k-instruct",
"fixie-ai/ultravox-v0_3",
"fixie-ai/ultravox-v0_5-llama-3_2-1b",
# [LANGUAGE GENERATION - HYBRID ARCH]
"ai21labs/Jamba-tiny-dev",
]
Expand Down
2 changes: 1 addition & 1 deletion tests/entrypoints/openai/test_audio.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

from ...utils import RemoteOpenAIServer

MODEL_NAME = "fixie-ai/ultravox-v0_3"
MODEL_NAME = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
TEST_AUDIO_URLS = [
AudioAsset("winning_call").url,
]
Expand Down
2 changes: 1 addition & 1 deletion tests/entrypoints/test_chat_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
EXAMPLES_DIR = VLLM_PATH / "examples"

PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_3"
ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
MLLAMA_MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct"
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from ....utils import RemoteOpenAIServer
from ...utils import check_logprobs_close

MODEL_NAME = "fixie-ai/ultravox-v0_3"
MODEL_NAME = "fixie-ai/ultravox-v0_5-llama-3_2-1b"

AudioTuple = Tuple[np.ndarray, int]

Expand Down
2 changes: 1 addition & 1 deletion tests/models/multimodal/processing/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ def _test_processing_correctness(
"Qwen/Qwen2-VL-2B-Instruct",
"Qwen/Qwen2.5-VL-3B-Instruct",
"Qwen/Qwen2-Audio-7B-Instruct",
"fixie-ai/ultravox-v0_3",
"fixie-ai/ultravox-v0_5-llama-3_2-1b",
])
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
@pytest.mark.parametrize("num_batches", [32])
Expand Down
2 changes: 1 addition & 1 deletion tests/models/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -267,7 +267,7 @@ def check_available_online(
"Qwen2VLForConditionalGeneration": _HfExamplesInfo("Qwen/Qwen2-VL-2B-Instruct"), # noqa: E501
"Qwen2_5_VLForConditionalGeneration": _HfExamplesInfo("Qwen/Qwen2.5-VL-3B-Instruct", # noqa: E501
min_transformers_version="4.49"), # noqa: E501
"UltravoxModel": _HfExamplesInfo("fixie-ai/ultravox-v0_3",
"UltravoxModel": _HfExamplesInfo("fixie-ai/ultravox-v0_5-llama-3_2-1b",
trust_remote_code=True),
# [Encoder-decoder]
"MllamaForConditionalGeneration": _HfExamplesInfo("meta-llama/Llama-3.2-11B-Vision-Instruct"), # noqa: E501
Expand Down
26 changes: 17 additions & 9 deletions vllm/model_executor/models/ultravox.py
Original file line number Diff line number Diff line change
Expand Up @@ -258,27 +258,35 @@ def __init__(self, config: UltravoxConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim)
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
dim = self.hidden_dim
dim_in = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim_in)
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
dim_mid = self.hidden_dim

if config.projector_act == "swiglu":
self.act = MulAndSilu()
dim = dim // 2
dim_mid = dim_mid // 2
else:
self.act = get_act_fn(config.projector_act)

self.linear_2 = nn.Linear(dim,
config.text_config.hidden_size,
bias=False)
self.ln_post = RMSNorm(config.text_config.hidden_size)
dim_out = config.text_config.hidden_size
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)

# Ultravox v0.4.1 and below use layer_norm after the second linear layer
# while v0.5.0 and above uses layer_norm after the first linear layer.
if config.projector_ln_mid:
self.ln_mid: nn.Module = RMSNorm(dim_mid)
self.ln_post = nn.Identity()
else:
self.ln_mid = nn.Identity()
self.ln_post = RMSNorm(dim_out)

def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.ln_mid(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
Expand Down
6 changes: 6 additions & 0 deletions vllm/transformers_utils/configs/ultravox.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,10 @@ class UltravoxConfig(transformers.PretrainedConfig):
The LoRA configuration for finetuning the text model.
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
The LoRA configuration for finetuning the audio model.
projector_ln_mid (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization at the middle of the
projector or at the end. Versions v0.4.1 and below
use `False`, but v0.5 and above use `True`.
"""

model_type = "ultravox"
Expand All @@ -56,6 +60,7 @@ def __init__(
projector_act: str = "swiglu",
text_model_lora_config: Optional[Dict[str, Any]] = None,
audio_model_lora_config: Optional[Dict[str, Any]] = None,
projector_ln_mid: bool = False,
**kwargs,
):
self.ignore_index = ignore_index
Expand All @@ -68,6 +73,7 @@ def __init__(
self.stack_factor = stack_factor
self.norm_init = norm_init
self.projector_act = projector_act
self.projector_ln_mid = projector_ln_mid

if text_model_id is not None:
# Avoid circular import
Expand Down